Partial Differential Equations and Integral Transforms Objectives

Text: Elementary Applied Partial Differential Equations R. Haberman, 3rd edition.

- 1. Be able to define what a partial differential equation (PDE) is.
- 2. Be able to determine the order of a PDE.
- 3. Know how to classify a PDE as linear, quasi-linear or nonlinear.
- 4. Be able to state the principle of superposition, the PDE's it applies to, and why it is useful.
- 5. Be able to classify second order linear PDE's as parabolic, hyperbolic, or elliptic.
- 6. Know the difference in behavior of solutions of the canonical parabolic, elliptic, and hyperbolic PDE's.
- 7. Know how to solve the heat (diffusion) equation for a one-dimensional rod with various boundary conditions.
- 8. Be able to solve Laplace's equation inside a rectangle with various boundary conditions.
- 9. Be able to solve Laplace's equation in the interior of a disk.
- 10. Know what a periodic function is, and know how to find the Fourier series of a given function defined on the interval (a,b).
- 11. Be able to expand a function given on the interval [0, L] in a Fourier cosine or Fourier sine series, and know what the Fourier series converge to.
- 12. Know when it is permissible to integrate and differentiate Fourier series.
- 13. Use eigenfunction expansions to solve the wave equation for a finite string with fixed
- 14. Be able to state the properties of the eigenvalues and eigenfunctions of a regular Sturm-Liouville problem, and give an example.
- 15. Be able to solve the rectangular vibrating membrane by separation of variables.
- 16. Be able to solve the circular vibrating membrane by separation of variables.
- 17. Be able to identify Bessel's equation and know properties of its solutions.
- 18. Know how to apply separation of variable methods to nonhomogeneous PDE's, for example: forced vibrations of a wave equation or Poisson's equation.
- 19. Know how to solve linear first order equations by using the method of characteristics.
- 20. Be able to solve quasi-linear PDE's using the method of characteristics.
- 21. Be able to use D'Alembert's solution for the wave equation to solve the initial value problem for the infinite string.
- 22. Be able to define the Fourier transform of a function.
- 23. Know the basic properties of the Fourier transform, and how to use it to solve linear constant coefficient PDE's.
- 24. Know how to use the convolution theorem for Fourier transforms to simplify the solutions of PDE's obtained using Fourier transforms.